
Infinite matrix product states, conformal field theory, and the Haldane-Shastry model

J. Ignacio Cirac1 and Germán Sierra1,2

1Max-Planck-Institut für Quantenoptik, Hans-Kopfermannstrasse 1, D-85748 Garching, Germany
2Instituto de Física Teórica, UAM-CSIC, Madrid, Spain

�Received 26 November 2009; revised manuscript received 19 February 2010; published 31 March 2010�

We generalize the matrix product states method using the chiral vertex operators of conformal field theory
and apply it to study the ground states of the XXZ spin chain, the J1-J2 model and random Heisenberg models.
We compute the overlap with the exact wave functions, spin-spin correlators, and the Renyi entropy, showing
that critical systems can be described by this method. For rotational invariant ansatzs we construct an inho-
mogenous extension of the Haldane-Shastry model with long-range exchange interactions.
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In recent years the study of one-dimensional �1D� quan-
tum lattice systems has received an enormous impetus due to
the invention of numerical algorithms, such as the density
matrix renormalization group �DMRG� �Ref. 1� and its ex-
tensions �for a review see Ref. 2�. The key for the success of
those methods is the careful treatment of the complex struc-
ture of the low-energy states, which is based on the behavior
of the entanglement entropy at zero temperature.3 For a
gapped system, the entanglement entropy, SL, of a subsystem
of length L converges toward a constant value, independent
of L.4 For critical systems, however, SL grows as the loga-
rithm of L, were the proportionality factor is related to the
central charge c of the underlying conformal field theory
�CFT�.5 This behavior of SL implies6 that the ground state
�GS� of the system is well approximated by a matrix product
state �MPS�,7 a state characterized in terms of certain matri-
ces As. This explains the enormous success of DMRG since
it can be understood as a variational method with respect to
MPS of bounded dimension.8 However, the unbounded in-
crease in the entanglement entropy makes DMRG much less
accurate for critical systems since the size of the matrices
characterizing the MPS must inevitably grow with the size of
the system. Thus, in order to properly describe the low-
energy states of such systems MPS with infinitely dimen-
sional matrices As are required.

The purpose of this paper is to construct such infinite-
dimensional MPS �iMPS for short� and their application to
1D spin chains. We will replace the finite-dimensional matri-
ces As by chiral vertex operators of a CFT. These operators
act on infinite-dimensional Hilbert spaces, which acquire the
meaning of ancillary space where entanglement and correla-
tions are transported. The huge enlargement of the ancillary
space will allow us to describe both critical and noncritical
1D systems on equal footing. In particular, we will consider
the XXZ and J1-J2 models to illustrate the accuracy of our
method.

Whereas standard MPS have, in general, a complicated
form if written in the spin basis, the iMPS that we shall
consider below have a rather simple form given by Jastrow-
type wave functions. There exists many important examples
of that type of wave functions, such as the Laughlin state of
the fractional quantum Hall effect �FQHE�,9 the Haldane-
Shastry state �HS� of the inverse square Heisenberg model10

and the related Calogero-Sutherland state of hard-core
bosons.11 A particular example of iMPS, which has spin ro-

tational invariance, will coincide with the HS wave function.
This case is particularly interesting because there is an en-
hanced symmetry described by the SU�2�k Wess-Zumino-
Witten �WZW� model at level k=1. Using the Ward identi-
ties of this CFT we shall find an integrable extension of the
HS Hamiltonian parameterized by a large number of coeffi-
cients. We will then use this extended HS model to study the
entanglement entropy of spin chains with frustration and ran-
dom couplings, finding a very good agreement with a law
recently proposed in Refs. 20 and 21.

Let us consider a spin-1/2 chain with N sites, and local
spin basis �si�, where si= �1 �i=1, . . . ,N�. A generic state in
the Hilbert space of this spin chain is given by

��� = �
s1,. . .,sN

��s1, . . . ,sN��s1, . . . ,sN� . �1�

A MPS state is an ansatz of the form

��s1, . . . ,sN� = �u�As1

�1� . . . AsN

�N��v� , �2�

where Asi

�i� and �u� , �v� are D-dimensional matrices and row
and column vectors, respectively. The number or parameters
needed to specify a MPS scales as 2D2N, which is much
smaller than the number of components of a generic state,
Eq. �1�, namely, 2N. To define a iMPS we shall replace the
matrices Asi

�i� by the chiral vertex operators of a CFT, thus
effectively working with D=�. Let us choose for simplicity
a Gaussian CFT with central charge c=1. Chiral vertex op-
erators are normal-ordered exponentials of the chiral bosonic
field ��z�,12 which we can be used to define

Asi

�i� = �si
:eisi

����zi�: �i = 1, . . . ,N� , �3�

where zi are complex numbers, � a positive real number,
�sj

=1 for j even, and �sj
=ei��sj−1�/2 for j odd.13 The scaling

dimension of these operators is h=� /2. For the vectors
�u� , �v�, we take the outgoing and incoming vacuum states of
the Gaussian CFT. Equation �2� becomes then the vacuum
expectation value of a product of vertex operators which is
given by12
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��s1, . . . ,sN� = �se
i�/2 �

i:odd
�si−1��

i	j

N

�zi − zj��sisj , �4�

where �s=1 if �i=1
N si=0 and zero otherwise. This condition

can be traced back to the conservation of the U�1� charge of
the Gaussian CFT. Equation �3� associates the charge of the
vertex operator Asi

�i� to the local spin si, so that the total third
component of the spin, Sz=�isi /2, vanishes. We will use the
iMPS variationally with zi and � as variational parameters.
The wave function �4� scales with an overall factor under a
Moebius transformation zi→ �azi+b� / �czi+d� ∀ i, so that
the ansatz only depends on N−3 z parameters. The latter
parameters must not be identified with the position of the
local spins si. An exception is the wave function associated
to translationally invariant spin chains where we shall choose
zn=e2�in/N�n=1, . . . ,N�. In that case we have

��s1, . . . ,sN� 
 �se
i�/2 �

i:odd
si �

n	m

N 	sin
��n − m�

N

�snsm

. �5�

For later purposes, it is convenient to express this spin wave
function using hard-core boson variables. Let qi=0,1 be the
occupation number of a hard-core boson at the site i. Map-
ping the spin-up �down� states into empty �occupied� hard-
core boson states, amounts to the relation si=1−2qi. The
wave function �5� then becomes

��n1, . . . ,nN/2� 
 ei��
i

ni �
ni	nj

N/2 	sin
��ni − nj�

N

4�

, �6�

where ni=1, . . . ,N denote the positions of N /2 hard-core
bosons in the lattice �i.e., those points where qni

=1�.
�1� The XXZ spin chain. The Hamiltonian with anisotropic

coupling � is given by

HXXZ = �
i=1

N

�Si
xSi+1

x + Si
ySi+1

y + �Si
zSi+1

z � , �7�

where SN+1=S1 for periodic boundary conditions �we take N
to be even�. This model displays three different phases at
zero temperature: �i� a gapped antiferromagnetic �AF� phase
��	1�, �ii� a critical phase �−1��1�, and �iii� a ferro-
magnetic phase �−1. To describe the GS of the XXZ
chain we shall use the translational invariant state, Eq. �5�,
which favors antiparallel nearest-neighbor spins. We expect
this ansatz to adequately describe the �	−1 regimes. The

only variational parameter left in Eq. �5� is �, which we fix
by numerically minimizing the energy. In Fig. 1 we plot this
overlap as a function of � for N=20. As anticipated above,
the overlap is rather poor in the ferromagnetic regime but
surprisingly good for �	−1, even above 99%. Moreover,
the overlap is exactly one at �=0 and −1, where �=1 /4 and
0, respectively. This indicates that the corresponding iMPS
states coincide with the exact GS. To prove this result, one
applies the unitary transformation U=�i:odd�2Si

z� to Eq. �7�
which flips the signs of the XY exchange interactions. For
�=−1, one obtains the isotropic ferromagnetic Heisenberg
Hamiltonian, whose GS is fully polarized with Sz=N /2. Ap-
plying the lowering operator �S−�N/2 to this state, and undo-
ing the unitary transformation, one recovers Eq. �5� for �
=0. For ��−1 the rotational symmetry is broken and the
unique GS is the fully polarized state with Sz=N /2, which is
of course orthonormal to our Sz=0 ansatz. In the case �=0,
the transformed Hamiltonian describes free hard-core
bosons, whose GS is the absolute value of a Slater determi-
nant which yields

f�n1, . . . ,nN/2� 
 �
ni	nj

N/2

sin
��ni − nj�

N
, �8�

where n1 , . . . ,nN/2 are the positions of the bosons on the lat-
tice. Undoing the U transformation, one recovers the state,
Eq. �6�, with �=1 /4. For the isotropic XXX model, �=1,
the maximal overlap is obtained for �=1 /2. This value of �
implies that the scaling dimension of the vertex operators Asi

�i�

is h=1 /4, which coincides with that of the primary fields of
spin 1/2 of the SU�2�1 WZW model. The corresponding
wave function �5� does not yield the exact GS, but its hard-
core version, Eq. �6�, coincides with the GS of the Haldane-
Shastry model, which belongs to the same universality class
that the XXX chain �see below for a more detailed discus-
sion�.

Collecting the previous results we see that the iMPS an-
satz, Eq. �5�, in the range 0��1 /2, corresponds to the
critical XXZ chain. To confirm the critical properties of this
ansatz we have computed the Renyi entropy SL

�2�=
−log Tr �L

2, where �L is the density matrix of Eq. �5� re-
stricted to a subsystem of size L. The computation is per-
formed as follows. We rewrite

e−SL
�2�

= �
n,n�,m,m�

��n,m����2��n�,m�����2
���n�,m����n,m��
���n,m����n�,m��

,

�9�

where �n� �and �n��� is an orthonormal basis in the space of
the L spins and �m� �and �m��� another corresponding to the
rest of spins. This expression can be easily evaluated by
using two independent spin chains and performing the addi-
tions using Monte Carlo techniques. In Figs. 2�a�–2�c� we
plot exp�4�SL

�2�−SN/2
�2� � /c� for N=200 and several values of �.

For a CFT with central charge c=1 one expects this quantity
to be sin��L /N�,5 which is also plotted �dashed line�. The
numerical results agree �in average� very well with this pre-
diction, confirming the criticality of the iMPS for �1 /2.
Note that the oscillations are not a feature of the numerical
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FIG. 1. �a� Overlap of the variational ansatz, Eq. �5�, with the
exact GS wave function of Hamiltonian �7� in the sector with Sz

=0 for N=20 spins; �b� optimal value of �. The dashed line shows
the curve �=−cos�2���.
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calculations but they are intrinsic in the model. For �	1 /2,
we have checked that the Renyi entropy saturates to a con-
stant value independent of L, in accordance with the gapped
character of the XXZ spin chain with �	1.

Other quantities that can be easily computed using Monte
Carlo techniques are spin-spin correlators Cn

aa= ��n
a�0

a��a
=x ,y ,z�. Figures 2�d� and 2�e� shows the correlator Cn

zz for
�=1 /2,3 /4. In the case �=3 /4, the correlator exhibits anti-
ferromagnetic long-range order, as expected for the gapped
�	1 regime. For �=1 /2 we can compare with the exact
result �stars in the figure� Cn

zz= �−1�nSi��n� / ��n�, where
Si�x� is the sine integral function. For this value of �, the
system is isotropic �see below�, so Cn

aa is independent of a,
and its expression was first obtained from a Gutzwiller pro-
jection of the one-band Fermi state.14 This result motivated
Haldane and Shastry to construct their inverse square ex-
change Hamiltonian.10 These authors also noticed that Cn

xx

coincides with the one-body density matrix of the Calogero-
Sutherland model of a gas of hard-core bosons.11 The GS of
the latter model is a continuum version of Eq. �6� for �
=1 /2. For other values of �� �0,1 /2�, the asymptotic be-
havior of the one-body density-matrix correlator is Cn

xx

n−2�,15 which can be compared with the exact scaling in
the critical XXZ model Cn

xxn−���=−cos ���.16 The com-
parison of these two results yields, �=−cos�2���, which
correctly reproduces the cases: �=0,1 /4,1 /2 �see Fig. 1�b��.

�2� J1-J2 Heisenberg model. We use the iMPS ansatz for
this frustrated antiferromagnet model described by the
Hamiltonian

HJ1,J2
= �

i=1

N

�J1Si · Si+1 + J2Si · Si+2� . �10�

The phases of this model are: �i� critical c=1 phase �0J2
J2,c0.241�, �ii� spontaneously dimerized phase �J2,c�J2
JMG=0.5�, and �iii� incommensurate spiral phase �J2
	JMG�.17 JMG is the Majumdar-Gosh point whose two GS
are the dimer configurations. Since this model is isotropic we

shall choose the ansatz, Eq. �4�, with �=1 /2 �see Ref. 18 for
a related ansatz�. For the choice of the zi parameters we
distinguish between even and odd sites

z2n = e�−i�0+4�in/N, z2n+1 = e−�+i�0+4�in/N, n = 1, . . . ,
N

2
,

where �0� �0,� /N� and � are variational parameters, which
for a translational invariant state are ��0 ,��= �� /N ,0�. These
parameters are found minimizing the energy, and their value
�a� as well as the overlap with the exact GS wave function
�b� are shown in Fig. 3 as functions of J2 /J1. At J2J2,c, the
parameter �0 departures from � /N, which reflects the spon-
taneous dimerization of the system. At the MG point, �0
=�=0 and the iMPS is a linear combination of the dimer
states. For J2	JMG the parameter � deviates from zero. Fi-
nally, at J2 /J11, one finds �=� /N, while � increases
steadily with an overlap approaching one, meaning that the
two chains become increasingly decoupled. A pictorial rep-
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FIG. 2. �Color online� ��a�–�c�� Renyi entropy SL
�2� for a chain

with N=200 sites and several values of �� �0,1 /2�. The dashed
line shows the CFT prediction for c=1. ��d� and �e�� Correlator Cn

zz

for several values of �. In �d� the stars indicate the exact result.
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FIG. 3. �Color� J1-J2 model �a� values of �0 and � for which the
energy is minimal; �b� overlap of the iMPS state with the exact GS.
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FIG. 4. �Color� Renyi entropy SL
�2� as a function of xL

=log�sin��L /N��. We have subtracted from the entropy log�2�xL /3
in order to compare with the prediction �Refs. 20 and 21�. Upper
�red�, medium �green�, and lower �blue� curves correspond to �
=0.75,0.5,0.1. The dashed line corresponds to xL /4. In �b� we have
averaged over consecutive points and plotted for low values of xL.
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resentation of the variational parameters is also shown in
Fig. 3�b�.

�3� Inhomogeneous Haldane-Shastry model. Each �finite�
MPS is the GS of a finite range parent �frustration free�
Hamiltonian.2 Hence one may expect the iMPS parent
Hamiltonians to have a range comparable to the size of the
system. We will show that this is the case for �=1 /2 and
arbitrary zn. Remarkably, the corresponding parent Hamil-
tonian has two-spin interactions only and is a generalization
of the HS model. First notice that the wave function �4� is the
chiral conformal block of N primary fields, of spin 1/2 and
conformal weight h=1 /4, in the SU�2�1 WZW model. These
primary fields are nothing but the chiral vertex operators, Eq.
�3�, for �=1 /2. The chiral conformal blocks of the SU�2�k
WZW model, on a cylinder, satisfy the Knizhnik-
Zamolodchikov equations,

� k + 2

2
zi

�

�zi
− �

j�i

zi + zj

zi − zj
Si · S j��cyl�z� = 0, �11�

where �cyl�z�=�i
Nzi

1/4��z� is a conformal transformation of
the wave function �4� from the complex plane into the cyl-
inder. Now, using Eq. �11�, for k=1, and Eq. �4� one can
prove that �cyl�z� is an eigenstate of the Hamiltonian

H = − �
i�j

	 zizj

�zi − zj�2 +
wij�ci − cj�

12

Si · S j �12�

with eigenenergy

E =
1

16�
i�j

wij
2 −

N�N + 1�
16

, �13�

where wij = �zi+zj� / �zi−zj� ,ci=� j�iwij. Taking zn=e2�in/N,
the parameters ci vanish and Eq. �12� becomes the HS
Hamiltonian whose GS is indeed Eq. �5�. For other choices
of zn, we have checked numerically that �cyl is the GS of Eq.
�12�. Hamiltonian �12� is an inhomogeneous generalization
of the HS model. The uniform HS model has a huge degen-

eracy in the spectrum that can be explained by a Yangian
symmetry. This degeneracy is broken in the nonuniform
case.

We can use the above construction to study the entangle-
ment entropy of random models. The scaling of the von Neu-
mann entropy for the random antiferromagnetic Heisenberg
model �AFH� model is 1

3 log 2 log L,19 and it is conjectured
that the same law holds for the Renyi entropy.20,21 We take
the iMPS ansatz, Eq. �4�, with �=1 /2 and zn=e2�i�n+�n�/N,
and random choices of �n uniformly distributed in
�−� /2,� /2�. This corresponds to having the inhomogeneous
HS model with random couplings. We have computed SL

�2�

averaged over realizations and plotted it in Fig. 4 for N
=1000. We have subtracted 1

3 log 2 log L to compare with the
prediction20,21 which should yield a horizontal line at 0. For
�=0.75,0.5, if we ignore the oscillations, we find a very
good agreement. Even though for �=0.1 the result seems to
fit better with the formula 1

4 log L, the inset shows that for
long distances the previous result seems to apply. Thus, the
larger the � the more valid the prediction is for shorter
blocks.

In this paper we have proposed an infinite-dimensional
version of the MPS using the chiral vertex operators of a c
=1 CFT, which leads variational wave functions of the Ja-
strow form. This generalization allow us to study the en-
tanglement properties and correlators of critical and noncriti-
cal spin chains. For isotropic spin chains the CFT is the
SU�2�1 WZW model and this fact allow us to construct their
associated parent Hamiltonians. They are given by an inho-
mogeneous generalization of the Haldane-Shastry Hamil-
tonian. Elsewhere it will be shown how to construct models
based on the SU�2�k WZW model for k	1, whose confor-
mal blocks yield degenerate ground states.22
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